125 research outputs found

    Pandemic inflation: a menace to tame for developing countries?

    Get PDF
    India and other developing countries are currently faced with the twin challenges of economic revival in the midst of the Covid-19 pandemic, and increasing inflation. Moreover, global economic recovery might prove to be detrimental for a developing country’s economy, contrary to popular narrative. Anand B. and Shreya Gulati argue that in the face of such challenges, these countries need to walk a tightrope between accommodative and tight monetary policy

    Commonly Utilized Non Vascularised Bone Grafts in Maxillofacial Reconstruction

    Get PDF
    Surgical defects created secondary to oncological resection are often debilitating for patients, both functionally and esthetically. Meticulous surgical planning and intricate knowledge of the vital anatomical structures are essential for understanding the biology of reconstruction in the craniofacial skeleton. Unlike reconstructive procedures in other areas where the functional components may be given priority, reconstruction of the face requires a delicate balance between the esthetic and functional units. Despite new developments, autogenous grafts have frequently remained a reliable alternative that withstood the test of time. Non-vascularized bone grafts are often a subset of autogenous grafts, where the graft solely depends on the recipient’s vascularity and is indicated in defect sizes of less than 6 cm

    Machine-directed gravitational-wave counterpart discovery

    Full text link
    Joint observations in electromagnetic and gravitational waves shed light on the physics of objects and surrounding environments with extreme gravity that are otherwise unreachable via siloed observations in each messenger. However, such detections remain challenging due to the rapid and faint nature of counterparts. Protocols for discovery and inference still rely on human experts manually inspecting survey alert streams and intuiting optimal usage of limited follow-up resources. Strategizing an optimal follow-up program requires adaptive sequential decision-making given evolving light curve data that (i) maximizes a global objective despite incomplete information and (ii) is robust to stochasticity introduced by detectors/observing conditions. Reinforcement learning (RL) approaches allow agents to implicitly learn the physics/detector dynamics and the behavior policy that maximize a designated objective through experience. To demonstrate the utility of such an approach for the kilonova follow-up problem, we train a toy RL agent for the goal of maximizing follow-up photometry for the true kilonova among several contaminant transient light curves. In a simulated environment where the agent learns online, it achieves 3x higher accuracy compared to a random strategy. However, it is surpassed by human agents by up to a factor of 2. This is likely because our hypothesis function (Q that is linear in state-action features) is an insufficient representation of the optimal behavior policy. More complex agents could perform at par or surpass human experts. Agents like these could pave the way for machine-directed software infrastructure to efficiently respond to next generation detectors, for conducting science inference and optimally planning expensive follow-up observations, scalably and with demonstrable performance guarantees.Comment: Submitted to the Astrophysical Journal; Comments welcome

    Dynamic Scheduling: Target of Opportunity Observations of Gravitational Wave Events

    Get PDF
    The simultaneous detection of electromagnetic and gravitational waves from the coalescence of two neutron stars (GW170817 and GRB170817A) has ushered in a new era of ‘multimessenger’ astronomy, with electromagnetic detections spanning from gamma to radio. This great opportunity for new scientific investigations raises the issue of how the available multimessenger tools can best be integrated to constitute a powerful method to study the transient Universe in particular. To facilitate the classification of possible optical counterparts to gravitational wave events, it is important to optimize the scheduling of observations and the filtering of transients, both key elements of the follow-up process. In this work, we describe the existing workflow whereby telescope networks such as GRANDMA and GROWTH are currently scheduled; we then present modifications we have developed for the scheduling process specifically, so as to face the relevant challenges that have appeared during the latest observing run of Advanced LIGO and Advanced Virgo. We address issues with scheduling more than one epoch for multiple fields within a skymap, especially for large and disjointed localizations. This is done in two ways: by optimizing the maximum number of fields that can be scheduled and by splitting up the lobes within the skymap by right ascension to be scheduled individually. In addition, we implement the ability to take previously observed fields into consideration when rescheduling. We show the improvements that these modifications produce in making the search for optical counterparts more efficient, and we point to areas needing further improvement

    Multimessenger Universe with Gravitational Waves from Binaries

    Get PDF
    Future GW detector networks and EM observatories will provide a unique opportunity to observe the most luminous events in the Universe involving matter in extreme environs. They will address some of the key questions in physics and astronomy: formation and evolution of compact binaries, sites of formation of heavy elements and the physics of jets.Comment: 11 pages, two tables, White Paper submitted to the Astro-2020 (2020 Astronomy and Astrophysics Decadal Survey) by GWIC-3G Science Case Team (GWIC: Gravitational-Wave International Committee

    Implications of the search for optical counterparts during the second part of the Advanced LIGO's and Advanced Virgo's third observing run: lessons learned for future follow-up observations

    Get PDF
    Joint multimessenger observations with gravitational waves and electromagnetic (EM) data offer new insights into the astrophysical studies of compact objects. The third Advanced LIGO and Advanced Virgo observing run began on 2019 April 1; during the 11 months of observation, there have been 14 compact binary systems candidates for which at least one component is potentially a neutron star. Although intensive follow-up campaigns involving tens of ground and space-based observatories searched for counterparts, no EM counterpart has been detected. Following on a previous study of the first six months of the campaign, we present in this paper the next five months of the campaign from 2019 October to 2020 March. We highlight two neutron star-black hole candidates (S191205ah and S200105ae), two binary neutron star candidates (S191213g and S200213t), and a binary merger with a possible neutron star and a 'MassGap' component, S200115j. Assuming that the gravitational-wave (GW) candidates are of astrophysical origin and their location was covered by optical telescopes, we derive possible constraints on the matter ejected during the events based on the non-detection of counterparts. We find that the follow-up observations during the second half of the third observing run did not meet the necessary sensitivity to constrain the source properties of the potential GW candidate. Consequently, we suggest that different strategies have to be used to allow a better usage of the available telescope time. We examine different choices for follow-up surveys to optimize sky localization coverage versus observational depth to understand the likelihood of counterpart detection
    • …
    corecore